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Abstract. Two coupled anharmonic oscillators are considered as a model for a nonperturbative
description of the correlation and nonadiabatic effects which are typical for many-dimensional
quantum systems. The eigenvalues and eigenfunctions for this model are found by means of the
operator method, modified for the case of degenerate solutions of the Schrödinger equation. It is
shown that the zeroth approximation of the method allows one to find the analytical and uniformly
suitable approximation for the energy levels and their splitting in the entire range of Hamiltonian
parameters and quantum numbers. Numerical calculations demonstrate the convergence of the
successive approximations, even for quasistationary states of the system. The results are of interest
for applied problems of spectroscopy and solid state physics.

1. Introduction

It is well known that, in spite of the increase in computer facilities, directab initio
calculations for complicated atomic and molecular systems are impossible at present, and
some approximations should be used in order to separate the variables in the Schrödinger
equation. The most commonly used approximations are Born–Oppenheimer, or adiabatic,
approximations (AA) and one-particle (OPA) approximations. However, for many physical
problems nonadiabatic and correlation (i.e. essentially multiparticles) effects are very
significant and should be taken into account in zeroth approximations. It is especially
important for the correct classification of energy levels and the qualitative analysis of the
system characteristics near to the points where the approximate eigenvalues with different
quantum numbers are intersected.

Therefore, it is of great interest that these methods allow one to find an approximate
solution of the Schr̈odinger equation in the entire range of system parameters, and also to
define the correct sequence of energy levels in the initial approximation, without considering
nonadiabacity and correlation as the perturbation effects. One such approach was introduced
in [1] as the operator method (OM) for obtaining a solution of the Schrödinger equation.
This method had generalized the variational-scaling approach, proposed by Caswell [2], to
the ground state of the anharmonic oscillator. It proved to be useful for both the ground and
excited states of a number of specific physical systems. The main advantage of the method is
the fact that the OM zeroth approximation is suitable uniformly for all considered systems. It
means that the corresponding analytical formulae interpolate the energy levels for any quantum
numbers and parameters of the systems with rather high accuracy. As a result, the subsequent
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approximations converge uniformly to the exact values. The history of the problem and its
connection with other methods were discussed in our review [3].

In the present paper we analyse the OM capabilities for the model of two coupled
anharmonic oscillators (CAO). In spite of its simplicity, this model includes many properties
typical for many-dimensional quantum systems and often used for development of non-
perturbative methods [4]. The model allows us to compare the results of various methods
and consider the mathematical nature of their distinctions.

The main purpose of the paper is to show that the OM zeroth approximation leads to
analytical and uniformly suitable formulae for the collective energy levels of the system and
their classification for any quantum number and Hamiltonian parameter. It is essential that the
standard perturbation, adiabatic or strong-coupling expansions can be obtained considering
the corresponding limits in our algebraic approximation. We also consider the second-order
corrections which essentially improve the accuracy of the formulae.

In the last section we consider the convergence of the OM high-order corrections calculated
numerically by means of the rather simple iteration algorithm. In contrast to the asymptotic
series of usual perturbation theory the OM successive approximations are proved to be
convergent and permit one to calculate the energies and wavefunctions of the system with
any necessary accuracy, even in the case of quasistationary states.

2. Coupled harmonic oscillators

Firstly, let us consider this simple quantum model being solved exactly in order to illustrate
some specific problems connected with the application of approximate methods to many-
particle systems. The dimensionless form of the corresponding Hamiltonian is

Ĥ = 1
2p̂

2
x +

1

2M
p̂2
y + 1

2(x
2 + y2) + λxy (1)

whereM is the ratio of the oscillator masses andλ is the interaction parameter.
In spite of its simplicity, this Hamiltonian is often used for approbation of various

approximate methods [5]. It is well known that the classical trajectories of the system are
described by rather complicated Lissajous figures which correspond to the essential dependence
of its quantum levels on the interaction and mass parameters. The exact eigenvalues of the
Hamiltonian can be found easily:

Enm = ν1(n + 1
2) + ν2(m + 1

2) (2)

whereν1,2 are defined by the expression

ν2
1,2 =

1

2M
(1 +M ±

√
(1−M)2 + 4λ2M).

One can see from formula (2) that the system energy has singularities if it is considered
as an analytical function in the complex plane of the parametersλ andM. This means that
the series in terms of powers of these parameters have the finite convergence radii. This is the
mathematical reason for the restrictions on various approximate methods as discussed earlier
for the one-dimensional system [3, 6].

The analogous restrictions appear here when the interactions between oscillators are
considered by some approximate methods. In fact, let us consider the results of a one-
particle approximation used for the Hamiltonian (1). The wavefunctions of the system in
the zeroth order (Hartree approximation) are chosen as the product of one-particle functions
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(the symmetrization of the function in the case ofM = 1 is not essential for our discussion):

9OPA(x, y) = ϕn(x) χm(y)∫
ϕn(x) ϕm(x) dx =

∫
χn(x) χm(x) dx = δmn.

(3)

The system of approximate equations for the one-particle functions follows from the exact
Schr̈odinger equation{

1
2p̂

2
x + 1

2x
2 + λxymm − εn

}
ϕn(x) = 0[

1

2M
p̂2
y + 1

2y
2 + λyxnn − εm

]
ϕm(y) = 0.

(4)

Both equations correspond to the uncoupled harmonic oscillators with displaced
equilibrium positions defined as

x̄ = −λymm ȳ = −λxnn.
The energy spectrum of the system in this approximation is

E(OPA)
nm = n + 1

2 +
1√
M

(
m + 1

2

)− 1
2λ

2
(
y2
mm + x2

nn

)− λxnnymm. (5)

One can see that it is actually the power series of parameterλ. Taking into account the
conditions of self-consistency for the parametersx̄, ȳ,

x̄ = −λȳ ȳ = −λx̄ (6)

one finds

x̄ = ȳ = 0 (7)

for an arbitrary value ofλ.
Thus, the zeroth-order approximationEOPA

mn differs essentially from the corresponding
exact value. Certainly, the consequent corrections take into account the particle correlations,
but in any case the OPA fails to describe the energy levelsE over the entire range of parameters
λ andM.

Let us show now that the adiabatic approximation applied to the Schrödinger equation
with Hamiltonian (1) leads to an analogous problem. A similar calculation has also been
considered by Fernandez [5] in order to illustrate the general method for calculation of the AA
high-order corrections.

In the AA zeroth-order approximation(M � 1) the operator̂p2
y should be neglected and

the ‘adiabatic’ termsεn(y) are defined by the energy levels of that part of the Hamiltonian
which depends on the ‘quick’ variablex

εn(y) = n + 1
2 − 1

2λ
2y2.

These values play the role of the potential energy in the Schrödinger equation for the
‘slow’ oscillator y in the next order of AA. In the result, the energy spectrum of the system,
taking into account the two orders of the series in the parameter 1/

√
M, has the form

E(AA)nm = n + 1
2 +

√
1− λ2

M
(m + 1

2). (8)

Comparing this expression with formula (2) one can see that the Born–Oppenheimer
approximation also does not lead to the uniformly suitable estimation for the energy levels,
even for such a simple system (compare with the result of Fernandez [5]).

Certainly, the same restrictions of the considered methods appear for the more complicated
model when the anharmonicity of the oscillators is included. In any case, the singularities of
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the energy, considered as an analytical function of the Hamiltonian parameters, define the finite
radii of convergence for the power series in these parameters and do not allow one to find the
uniformly suitable approximation.

In contrast, let us show now that the OM zeroth approximation takes into account the above-
mentioned singularities and defines the eigenvalues over the entire range of the Hamiltonian
parameters similarly to a number of other systems [6–8]. Certainly, the considered simple
system is of methodical interest only (compare with the paper [6]). However, it will be shown
in later sections that the OM also leads to analogous results for the nontrivial system.

In accordance with the OM, let us introduce the creationa+, b+ and annihilation operators
a, b by means of the following canonical transformation:

x = x ′ cosα + y ′ sinα y = y ′ cosα − x ′ sinα

p̂x = p̂′x cosα + p̂′y sinα p̂y = −p̂′x sinα + p̂′y cosα

x ′ = a + a+

√
2ω1

y ′ = b + b+

√
2ω2

p̂′x = −i(a − a+)

√
ω1

2
p̂′y = −i(b − b+)

√
ω2

2
.

(9)

In formulae (9) the variational parametersω1,2 for both coordinates are introduced
for analogy to the one-dimensional case [1], and the parameterα for the operator phase
transformation is connected with the additional degree of freedom for the two-dimensional
system. In the linear case considered the transformation (9) leads to the same result as the well
known Bogoliubov–Tyablikov transformation [9], but our algorithm for choice of the optimal
values of the parameters is suitable for nonlinear systems as well.

The Hamiltonian (1) in the new representation has the form

Ĥ = 1

4

{
(a2 + a+2)

(
1

ω1
− ω1

)
+ (b2 + b+2)

(
1

ω2
− ω2

)
+(2a+a + 1)

(
1

ω1
+ ω1

)
+ (2b+b + 1)

(
1

ω2
+ ω2

)}
+
λ

2

{
cos 2α√
ω1ω2

(ab + a+b+ + a+b + ab+)

+
sin 2α

2

[
− 1

ω1
(a2 + a+2 + 2a+a + 1) +

1

ω2
(b2 + b+2 + 2b+b + 1)

]}
+

1

4

(
1− 1

M

)[
(a+ − a)2ω1 sin2 α + (b+ − b)2ω2 cos2 α

−(a+ − a)(b+ − b)√ω1ω2 sin 2α
]
. (10)

The OM zeroth approximation corresponds to that part of the Hamiltonian which
commutates with the excitation number operatorsa+a = n̂ andb+b = m̂
Ĥ0 = 1

4

[(
1

ω1
+ ω1

)
(2n̂ + 1) +

(
1

ω2
+ ω2

)
(2m̂ + 1)

]
+
λ sin 2α

4

[
1

ω2
(2m̂ + 1)− 1

ω1
(2n̂ + 1)

]
+

1

4

(
1

M
− 1

)[
ω1(2n̂ + 1) sin2 α + ω2(2m̂ + 1) cos2 α

]
. (11)

One can show by analogy with the one-dimensional case [3] that the perturbation series
in the operatorV̂ = Ĥ − Ĥ0 is uniformly suitable in that it converges over the entire range of
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λ,M and auxiliary parametersα, ω1,2. However, the best zeroth approximation corresponds
to choosing these parameters such that the eigenvalues are independent of them, because they
define only the eigenfunction representation [3].

Therefore,

∂Emn

∂ω1
= ∂Emn

∂ω2
= ∂Emn

∂α
= 0 (12)

whereEmn(ω1, ω2, α) is defined by formula (11) where the operators are changed to the
numbersm, n.

Two equations in formulae (12) allow one to findω1,2(α) and exclude them from the
expression for energy

E(OM)
mn (α) = ν1(α)(n + 1

2) + ν2(α)(m + 1
2)

ν2
1,2 =

1

2M
(1± λ sin 2α)

[
(M + 1)∓ (M − 1) cos 2α)

]
.

(13)

The energy (13) has an extremum when the transformation parameterα is equal to

z1,2 = 1

2Mλ

[
(M − 1)±

√
(M − 1)2 + 4Mλ2

]
(14)

wherez = tanα.
Substitution of the values (14) to the equation (13) shows that the energy levelsE(OM)

mn

found in the OM zeroth approximation coincide with the exact ones (2).

3. Analytical approximation for the CAO energy levels

Let us now consider the general form of the nonsymmetrical CAO Hamiltonian [10]

Ĥ = 1
2p̂

2
x + 1

2p̂
2
y + 1

2

(
x2 +�2y2

)
+ λxy +Ax4 +By4 +Cx2y2. (15)

HereA, B andC are the dimensionless parameters (A, B > 0, C > −2
√
AB) and we

have introduced not only a quadratic interaction between the oscillators but a linear one as
well, because it is essential for the modelling of some molecular or lattice potentials [11].

As mentioned previously, we use the same transformation (9) in order to put the
Hamiltonian (15) into the second quantized form. Then it is necessary to separate the zeroth-
order HamiltonianĤ0 as the part ofĤ which commutes with the particle number operatorsn̂a
andn̂b. In the considered case,̂H0 is defined by the following expression:

Ĥ0 = 1

2

(
ω1 +

u2 +�2v2

ω1

)(
n̂a + 1

2

)
+

1

2

(
ω2 +

v2 +�2u2

ω2

)(
n̂b + 1

2

)
+
λuv

ω1ω2

[
ω1
(
n̂b + 1

2

)− ω2
(
n̂a + 1

2

)]
+

3

2ω2
1

(
n̂2
a + n̂a + 1

2

)(
Au4 +Bv4 +Cu2v2

)
+

3

2ω2
2

(
n̂2
b + n̂b + 1

2

)(
Av4 +Bu4 +Cu2v2

)
+

1

ω1ω2

(
n̂a + 1

2

)(
n̂b + 1

2

)[
2u2v2(3A + 3B − 2C) +C(u4 + v4)

]
(16)

where

u = cosα v = sinα.
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Now, by definition the eigenfunctions of the operator (16) are defined by the eigenvectors
of the particle number operators

n̂a|N,M〉 = N |N,M〉 n̂b|N,M〉 = M|N,M〉 (17)

with the eigenvaluesE(0)NM(ω1, ω2, α), which can be found from formula (16) by substituting
the quantum numbersN andM instead of the corresponding operators.

However, these eigenvalues play only an intermediate role, and they lead us to the
proper OM zeroth approximation only when we calculate the parametersω1, ω2 andα for
any quantum state from the conditions (12). Obviously, they prove to be rather complicated
functions of the quantum numbers and Hamiltonian parameters, and just these functions ensure
the uniform suitability of the OM approximation [3]. We use the same algorithm for the
considered system and find a quite simple analytical approximation for the energy levels of
the coupled anharmonic oscillators

E
(OM)
NM =

1

4

(
3ω1 +

u2 +�2v2

ω1

)(
N + 1

2

)
+

1

4

(
3ω2 +

v2 +�2u2

ω2

)(
M + 1

2

)
+
λuv

2ω1ω2

[
ω1
(
M + 1

2

)− ω2
(
N + 1

2

)]
. (18)

Of course, the nontrivial dependence of the energy on the quantum numbers is defined by
the parametersω1, ω2, α being solutions of the following algebraic equations:

ω3
1 − ω1

{
u2 +�2v2 − 2λuv +

4

ω2

(
M + 1

2

)[
(3A + 3B − 2C) u2v2 + 1

2C
(
u4 + v4

)]}
−6(2N2 + 2N + 1)

2N + 1

(
Au4 +Bv4 +Cu2v2

) = 0 (19)

ω3
2 − ω2

{
v2 +�2u2 + 2λuv +

4

ω1

(
N + 1

2

)[
(3A + 3B − 2C) u2v2 + 1

2C
(
u4 + v4

)]}
−6(2M2 + 2M + 1)

2M + 1

(
Av4 +Bu4 +Cu2v2

) = 0 (20)[
ω1
(
M + 1

2

)− ω2
(
N + 1

2

)]
(1−�2 + 2λ cot 2α)

+
3ω2

ω1
(2N2 + 2N + 1)

[
B − (A +B) cos2 α + 1

2C cos 2α
]

+
3ω1

ω2
(2M2 + 2M + 1)

[
A− (A +B) cos2 α + 1

2C cos 2α
]

+12(N + 1
2)(M + 1

2)(A +B − C) cos 2α = 0. (21)

These formulae should be modified in order to take into account the additional degeneracy
of the energy levels caused by the permutative symmetry of the system in the case of
identical oscillators (A = B,� = 1). If we do not make the modification in the OM
zeroth approximation, the high-order corrections will have pseudo-singularities typical for
any perturbation theory in the case of the levels close to the degeneracy [12].

Partly, this degeneracy is removed because of the rotation of the coordinates due to the
transformation parameterα (9). This leads to asymmetry relative to the permutationN ↔ M

term in formula (19), but it is proportional to the parameterλ of linear coupling, and in the
important case of only quadratic interaction of the oscillators [10] the degeneracy remains.

There is a well known algorithm to solve this problem in the general case. We should
construct ‘the right linear combinations’ of the degenerate zeroth-order wavefunctions and take
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into account the perturbation operator on this finite basis [12]. The operator method allows
one to use this idea for obtaining the uniformly suitable approximation and the example of a
two-level system in a quantum field was considered [13].

The modification of the OM zeroth-order approximation in our case means that the
following wavefunctions of the ‘collective’ states

|9(0)
NM〉 = C1|N,M〉 +C2|M,N〉 N 6= M (22)

should be used, instead of eigenfunctions of the operatorsn̂a and n̂b, in order to calculate
the energy levels of the system. The coefficientsC1,2 for any set of quantum numbers are
considered as additional linear variational parameters.

Then, the degeneracy is removed because those terms in the perturbation operator
V̂ = Ĥ − Ĥ0 which are proportional to

V̂ab = a+2b2 + a2b+2 (23)

commute with the total particle number operator

n̂ = n̂a + n̂b

but mix the states with the reverse order of the quantum numbersN andM.
As usual the condition of existence of nonzero coefficientsC1,2 leads to the following

expression for the energy levels of CAO instead of formula (18):

E±NM = 1
2

(
E
(OM)
NM +E(OM)

MN

)±√ 1
4

(
E
(OM)
NM − E(OM)

MN

)2
+ |〈N,M|V̂ab|M,N〉|2 (24)

with matrix elements

〈N,M|V̂ab|M,N〉 = C

4ω1ω2

[
(N + 1)(N + 2) δN,M−2 + (M + 1)(M + 2) δN,M+2

]
(25)

whereδN,M is the Kronecker delta.
It is important to note that the transformation parametersω1, ω2, α are defined by the same

equations (19)–(21).
Generally speaking, formulae (18)–(21) and (24) realize the main purpose of our paper

because they give the approximate algebraic presentation for the energy levels of CAO in
the entire range of the Hamiltonian parameters and quantum numbers. These formulae can
essentially complete the asymptotic and numerical calculations when the CAO are used for
qualitative simulation of real physical systems.

4. Comparison with known results

In this section we will consider the obtained formulae in various limit cases when the exact
analytical series can also be found by other known methods. Besides, a number of the values
E
(OM)
NM are compared with the numerical resultsE(acc)

NM for the intermediate range of the oscillator
parameters in order to prove the uniform suitability of the OM zeroth approximation. Finally,
the second-order correction is calculated to analyse the convergence of the OM successive
approximations.

It is important to stress here the point [3] that most of the above-mentioned series are
asymptotic and make sense only in the range of small values of the corresponding parameters.
At the same time, the OM zeroth approximation is written in the form of the analytical function
over the entire range of variation for all parameters and quantum numbers. As a result, this
function is expanded into the convergent power series and their coefficients cannot coincide
completely with the analogous coefficients of the asymptotic divergent series. The differences
between them are the same order of magnitude as the accuracy of the OM zeroth approximation
for the intermediate values of the parameters.
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4.1. Small anharmonicity

(AN,CM � 1 and, for simplicity, we put� = 1, B = λ = 0).
The usual perturbation series, in terms of powers ofA andC, with second-order accuracy,

has the following form:

E
(PT)
NM ' N +M + 1 + 3

4(2N
2 + 2N + 1)A

+1
4[(2N + 1)(2M + 1)± (N2 + 3N + 2) δN,M−2 ± (M2 + 3M + 2)δN,M+2]C

− 1
8(34N3 + 51N2 + 59N + 21)A2 − 3

4(2M + 1)(2N2 + 2N + 1)AC

− 3
16[3NM(N +M + 2) + 3

2(N
2 +M2) + 5

2(N +M) + 1]C2. (26)

In order to consider formula (24) in the corresponding limit one should find the
approximate solutions of the equations (19)–(21):

ω1 ' 1 + 1
2p1− 1

8p
2
1 − 1

4p1p2 − 1
2p1q + 1

2q − 1
83q2

ω2 ' 1 + 1
2p2 − 1

8p
2
2 − 1

4p1p2 − 1
4p2q

α = 0 p1 = (2M + 1)C p2 = (2N + 1)C q = 6A
2N2 + 2N + 1

2N + 1
.

(27)

Substitution of these solutions into formula (24) shows that the expansion of the value
E
(±)
NM in the case of small anharmonicity has almost the same form asE

(PT)
NM in formula (26),

with only two distinctive terms of second order:

−9

4

(2N2 + 2N + 1)2

2N + 1
A2 − 1

8[4NM(N +M + 2) + 2(N2 +M2) + 3N + 3M + 1]C2. (28)

4.2. Strong anharmonicity

Essentially, almost equivalent simplifications of the OM formulae can be made both instrong
coupling (A,B,C � 1) and quasiclassical(N,M � 1) limit cases. As usual, even
asymptotical formulae in the strong-coupling limit remain quite unwieldy in the general case,
and we write them out only for the most interesting set of parameters (A = B;� = 1; λ = 0)

As before we should begin from the equations for the OM parameters

α = 0 u = 1 v = 0

ω1 '
[
Cz(2M + 1) + 6A

2N2 + 2N + 1

2N + 1

]1/3

ω2 '
[
C

z
(2N + 1) + 6A

2M2 + 2M + 1

2M + 1

]1/3

(29)

where the valuez is the positive solution of the following algebraic equation:

z36A
2M2 + 2M + 1

2M + 1
+ z2C(2N + 1)− zC(2M + 1)− 6A

2N2 + 2N + 1

2N + 1
= 0.

Then, one can find the approximate formula for the energy

E
(±)
NM ' 3

8ω1(2N + 1) + 3
8ω2(2M + 1)

± C

4ω1ω2
[(N + 1)(N + 2) δN,M−2 + (M + 1)(M + 2) δN,M+2]. (30)
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It easy to verify that in the case of noninteracting systems (C = 0) formula (30) leads to
the same expression for the energy of each oscillator

εN ' 3
8

[
6A(2N + 1)2(2N2 + 2N + 1)

]1/3
as found previously [3] and proved to be quite a good approximation of the leading asymptotic
term for the energy of the one-dimensional anharmonic oscillator.

Unfortunately, we do not know the accurate asymptotic formulae for interacting oscillators,
but comparison of formula (29) with numerical results (see below) shows that the functional
dependence of the energy levels on the Hamiltonian parameters in the considered range is
correct with rather small errors (∼3–5%) in the coefficients of the corresponding series.

4.3. Adiabatic approximation(�� 1)

We simplify and transform the Hamiltonian (15) in such a way that one is able to find accurately
the asymptotic series and compare with the OM results. Let us putA = B = λ = 0;�y = Y .
This means that actually the following Hamiltonian is considered

Ĥad = 1
2p̂

2
x + 1

2�
2p̂2

Y + 1
2

(
x2 + Y 2

)
+
C

�2
x2Y 2. (31)

The adiabatic terms of the ‘quick’ oscillator (x) can be found easily and corresponds to
the zeroth-order Born–Oppenheimer approximation

εN(Y ) =
√

1 + 2
C

�2
Y 2
(
N + 1

2

) ' √2C

�
|Y |(N + 1

2

)
.

Then the vibration spectrum of the ‘slow’ oscillator (Y ) in the considered limit can be
found in the quasiclassical approximation. In the result, the leading term of the adiabatic series
is defined as follows:

E
(AD)
NM '

(
3
4π
)2/3[

C
(
N + 1

2

)2(
M + 1

2

)2]1/3
. (32)

Table 1. The ground state energyE00 for CAO, λ = 0,� = 1,A = µa11, B = µ, C = 2µa12.

a11 µ E a12 = 1.0 a12 = 0.0 a12 = −0.6

E(0) 1.1432 1.1103 1.0889
0.1 E(2) 1.1410 1.1083 1.0862

E(A) 1.1409 1.1082 1.0861

E(0) 1.7066 1.5852 1.5003
0.8 1.0 E(2) 1.6923 1.5712 1.4776

E(A) 1.6913 1.5689 1.4740

E(0) 3.2641 2.9620 2.7444
10 E(2) 3.2240 2.9208 2.6739

E(A) 3.2200 2.9118 2.6572

E(0) 1.1226 1.0874 1.0643
0.1 E(2) 1.1206 1.0859 1.0621

E(A) 1.1206 1.0859 1.0621

E(0) 1.6263 1.4859 1.3824
0.4 1.0 E(2) 1.6130 1.4743 1.3575

E(A) 1.6123 1.4725 1.3545

E(0) 3.0597 2.6979 2.4175
10 E(2) 3.0207 2.6616 2.3266

E(A) 3.0175 2.6538 2.3057
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The analogous expansion can also be found for the OM zeroth approximation by means
of the corresponding limit transition in the formulae (18)–(21). It leads to

E
(OM)
NM '

(
6
4

√
3
)2/3[

C
(
N + 1

2

)2(
M + 1

2

)2]1/3
(33)

which is in good agreement with formula (32).

4.4. Numerical results

It is of interest to compare our analytical approximation with the accurate numerical results
calculated for intermediate values of the Hamiltonian parameters in the series of papers [4, 10].
Table 1 shows the results of such a comparison for some specific values of the Hamiltonian
parameters and quantum numbers.

In this table,E(0) are calculated by means of the OM zeroth-order approximation,E(A)

are the same values from the above-mentioned papers. Besides, we have shown the values
E(2) = E(0) +1E with the OM next correction1E calculated by means of the second-order
perturbation theory in the operatorV̂ = Ĥ − Ĥ0 with the HamiltoniansĤ andĤ0 defined by
formulae (15) and (16). The details of the OM high-order corrections are considered in our
paper [3]. For example, we write out the analytical formula for this correction in the considered
case

1EMN = X1

[
1

4

(
1

ω1
− ω1

)
+ 2a(2N − 1) + c(2M + 1)

]2

+X2

[
1

4

(
1

ω1
− ω1

)
+ 2a(2N + 3) + c(2M + 1)

]2

Table 2. The collective state energiesE±02 for CAO λ = 0,� = 1,A = 1,B = 1.

C/2 E E+
02 E−02

1.0 E(0) 6.527 6.249
E(2) 6.526 6.248
E(A) 6.549 6.214

0.8 E(0) 6.434 6.199
E(2) 6.435 6.201
E(A) 6.454 6.173

0.4 E(0) 6.227 6.096
E(2) 6.233 6.102
E(A) 6.242 6.083

0.0 E(0) 5.985 5.985
E(2) 5.993 5.993
E(A) 5.983 5.983

−0.4 E(0) 5.687 5.868
E(2) 5.688 5.869
E(A) 5.657 5.879

−0.8 E(0) 5.297 5.752
E(2) 5.260 5.715
E(A) 5.174 5.759

−1.0 E(0) 5.046 5.698
E(2) 4.958 5.610
E(A) 4.775 5.690
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+X3

[
1

4

(
�2

ω2
− ω2

)
+ 2b(2M − 1) + c(2N + 1)

]2

+X4

[
1

4

(
�2

ω2
− ω2

)
+ 2b(2M + 3) + c(2N + 1)

]2

+X5a
2 +X6b

2 +X7c
2.

(34)

Here

a = A

4ω2
1

b = B

4ω2
2

c = C

4ω1ω2

X1 = N(N − 1)

ZN−2,M
X2 = (N + 1)(N + 2)

ZN+2,M

X3 = M(M − 1)

ZN,M−2
X4 = (M + 1)(M + 2)

ZN,M+2

X5 = N(N − 1)(N − 2)(N − 3)

ZN−4,M
+
(N + 1)(N + 2)(N + 3)(N + 4)

ZN+4,M
(35)

X6 = M(M − 1)(M − 2)(M − 3)

ZN,M−4
+
(M + 1)(M + 2)(M + 3)(M + 4)

ZN,M+4

X7 = N(N − 1)M(M − 1)

ZN−2,M−2
+
(N + 1)(N + 2)(M + 1)(M + 2)

ZN+2,M+2

ZKL = −E(OM)
KL +E(OM)

NM . (36)

Table 3. The collective state energiesE±13 for CAO (Ĥ = p̂2
x + p̂2

y + x2 + y2 +Cx2y2).

C E E+
13 E−13

0.1 E(0) 10.3495 10.5943
E(2) 10.3440 10.5888
E(A) 10.3439 10.5883

1.0 E(0) 12.4137 13.5932
E(2) 12.3339 13.5134
E(A) 12.3323 13.4505

5.0 E(0) 16.8013 19.3336
E(2) 16.5758 19.1080
E(A) 16.5965 18.7387

20 E(0) 24.1062 28.4908
E(2) 23.6777 28.0622
E(A) 23.7604 27.1386

100 E(0) 39.1704 46.9931
E(2) 38.3734 46.1960
E(A) 38.582 44.249

1000 E(0) 82.5140 99.6842
E(2) 80.7340 97.9042
E(A) 81.29 93.2

5000 E(0) 140.5087 169.9703
E(2) 137.4448 166.9065
E(A) 138.39 158.8
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One can see from table 1 that the OM zeroth approximation allows one to calculate the
ground-state energy of the system with quite good accuracy for any parameters. Tables 2 and
3 are of particular interest because they show that OM is also effective when calculating the
energies of the excited collective states and their splitting.

5. Iteration algorithm for the OM consequent approximations

In spite of the numerical calculation of the accurate energy spectrum for CAO not being the
main purpose of our paper, we consider here the equations for the OM high-order corrections
in order to illustrate the convergence of the method for the system with several degrees of
freedom.

The full algorithm for calculation of the OM successive approximations was described in
detail earlier [3] so we discuss it here very shortly. We find the solution of the Schrödinger
equation

Ĥ |9NM〉 = ENM |9NM〉 (37)

with Hamiltonian (15), in the following form:

|9NM〉 = |N,M〉 +
∑

K,L 6=N,M
CKLNM |K,L〉. (38)

Here,|N,M〉 are the eigenvectors defined by equations (17). It is important to note that,
in the general case, the operatorsn̂a,b and their eigenfunctions depend on the parameters of
the transformation (9) and on the quantum numbersN,M because of equations (19)–(21).
In the result, the state vectors|9(0)

NM〉 ' |N,M〉 are nonorthogonal in the OM zeroth-order
approximation. But in the expansion (38) we use the full and orthogonal set of the state vectors
referring to the quantum numbersN,M of the unknown wavefunction.

One can substitute the expansion (38)–(37) and obtain the system of infinite number
of algebraic but nonlinear equations for the energyENM and coefficientsCKLNM using the
normalization condition in the form typical for perturbation theory in the Wigner–Brillouin
form [3]

〈N,M|9NM〉 = 1.

If we suppose that the Hamiltonian (16) of the OM zeroth-order approximation defines
the main contribution to the exact eigenvalue the above-mentioned equations can be solved by
means of simple iteration considering the operatorV̂ = Ĥ − Ĥ0 as a small value. It leads to
the following system of recursion equations:

E
(s)
NM = E(0)NM +

∑
K,L 6=N,M

CKLNM(s − 1)〈N,M|V̂ |K,L〉

CKLNM(s) = [E(s)NM − 〈K,L|Ĥ0|K,L〉]−1

×
{
〈N,M|V̂ |K,L〉 +

∑
P,Q6=N,M

〈N,M|V̂ |P,Q〉CPQKL (s − 1)

}
.

(39)

Heres = 0, 1, 2, . . . and the initial terms of the recursion sequence are

CKLNM(0) = 0 E
(0)
NM = E(OM)

NM .

It is well known that, in usual perturbation theory, the eigenvalue is calculated as the sum
of the series of the corrections in a power of some parameter and this series is diverged for
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Table 4. Convergence of the iterationsE(s)NM for CAO, λ = 0,� = 1,A = B, C = µA.

A 0.1 0.1 1.0 1.0 10 10

µ 1.0 −1.0 1.0 −1.0 1.0 −1.0

E
(0)
00 1.152 760 1.085 516 1.765 877 1.492 155 3.108 030 2.770 058

E
(8)
00 1.150 188 1.081 282 1.724 184 1.443 776 3.301 210 2.557 740

E
(A)
00 1.150 2 1.081 3 1.724 2 1.443 8 3.301 2 2.557 7

E
(0)
10 2.419 662 2.231 765 3.835 767 3.105 372 7.610 856 5.924 771

E
(8)
10 2.414 341 2.221 196 3.830 324 3.066 649 7.527 043 5.487 183

E
(A)
10 2.414 3 2.211 2 3.830 4 3.066 6 7.527 1 5.488 1

Table 5. Complex-valued energies ReE(s)NM − i Im E
(s)
NM for the CAO quasistationary statesλ = 0,

� = 1,A = B, C = µA.

A −0.1 −0.1 −0.2 −0.2 −0.4 −0.4

µ 1.0 −1.0 1.0 −1.0 1.0 −1.0

ReE(10)
00 0.753 411 0.864 702 0.719 257 0.798 733 0.752 215 0.768 634

ImE
(10)
00 0.159 099 0.046 916 0.379 077 0.163 381 0.642 765 0.340 915

ReE(12)
10 1.439 368 1.663 981 1.458 860 1.627 066 1.596 000 1.651 425

ImE
(12)
10 0.571 692 0.252 742 1.070 673 0.540 111 1.646 405 0.884 010

anharmonic oscillators. In contrast, the accurate values for the energy and coefficients of the
wavefunction are calculated as the limits of the recursion sequences

CKLNM = lim
s→∞C

KL
NM(s) ENM = lim

s→∞E
(s)
NM (40)

which are proved to converge rather rapidly.
The numerical results in table 4 show that, in many cases, eight iterations calculated by our

method lead to more precise eigenvalues than found in [10] by means of a more complicated
algorithm.

In conclusion, we would like to discuss one more important application of the operator
method. The matter is that, in accordance with the analysis considered in our paper [3] for
a one-dimensional system, the optimal choice of artificial parameters in the transformation
(9) is essential for uniformly suitable zeroth approximation. However, in the OM successive
approximations these parameters define only the rate, not the convergence, of the iterations
which exist in the complex-valued plane ofω. The same result proved to be correct for the
CAO system. Moreover, the recursion sequence (40) also converges for the complex-valued
parametersω1,2. It allows one to use the method of complex rotation of the coordinates when
calculating the energies and widths of the quasistationary states [14]. In our case, such a
problem appears when the parametersA,B in Hamiltonian (15) are negative. Also, table 5
shows the real partsE(s)NM of the energy for the quasistationary levels and their imaginary parts
(−0(s)NM/2) calculated by means of the equations (39) in the result ofs iterations. One can see
that 12 iterations were enough in order to find six exact figures for unknown values and this
confirms the high rate of convergence for the OM algorithm.
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6. Conclusions

Thus, the quantum system of two coupled anharmonic oscillators was investigated by means
of the operator method for the solution of the Schrödinger equation. Analysis of this model
allows us to emphasize the two most essential aspects of the considered approach.

On the one hand, it was shown that the OM, as the nonperturbative method for the
description of quantum systems, remained effective in the case of several degrees of freedom
with strong interaction. It means that the OM zeroth approximation interpolates the exact
eigenvalues in the entire range of the system parameters and its subsequent approximations
converge rather rapidly to the exact solution of the Schrödinger equation.

More applied results of our paper are defined by formulae (18)–(22) which describe
analytically the quantum levels of the system with arbitrary values of anharmonicity and
coupling constant. Formulae (18) can be considered as the generalization for the nonlinear
system the conception of the normal coordinates. Of course, there is no full separation of
variables in this case because of the parametersω1,2, but nevertheless it can be a good basis
for classification of the vibration spectra for the molecules with strong anharmonicity and for
analysis of nonadiabatic and correlation effects in solid state physics.
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